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Abstract— We present a novel, Java-based add-on 

to the Korat exhaustive testing framework. Our 

utility dynamically determines the structure and sub-

structures of a class under test and then presents an 

interactive visual representation. This representation 

permits a software tester to graphically constrain the 

number of member variables created by Korat’s 

finitization process. Finally, our extension textually 

presents the generated valid input structures. We 

believe our implementation to be novel and 

beneficial in that it (1) uses the Java reflection API 

to generate a treeview of the decomposed test 

structure (including contained sub-structures), (2) 

allows a tester to visually constrain the number, 

nullability, and value of objects generated and (3) 

visually depicts the finitization space created in a 

hierarchical manner. Most significantly, the ability 

we provide to refine the input parameters to the 

finitization method enables the tester to readily 

control test scope. In the last section of this paper we 

use our graphical adaptation to test a data structure 

similar to that in use at a large financial institution. 

I. INTRODUCTION 

HE Korat algorithm is used to exhaustively, but 

parsimoniously, generate all legal object 

configurations within a user-defined size for linked 

complex data structures [1][2]. Korat generates valid 

test inputs by iterating through a state space of 

candidates. Only those candidates returning 

affirmatively from a class invariant method (the 

repOK) are considered valid inputs for use in testing. 

 Korat is singular in its ability to quickly and 

exhaustively generate test inputs given a user-

specified bound on the size of inputs, the scope. 

Korat conservatively generates test inputs by 

avoiding the duplication of entities whose 

members form identical structural graphs 

(isomorphs) but differ only in terms of identity. It 

does this by imposing a natural partial order on 

fields, and tracking accesses made thereto by the 

class invariant. In the following sections of this 

paper we first address the motivations of our 

project. Next we discuss our understanding -- and 

the importance of -- the object field and class 

domain data structures in Korat. We follow this 

coverage by addressing the details of our 

implementation of Korat and our visual 

finitization editor. Finally, we test our efforts 

against a real-world data structure used in a 

national financial services firm. 

II. PROJECT MOTIVATIONS 

In consideration of Korat’s power and speed, we 

chose to develop a graphical, Java-based, add-on 

tool to facilitate a tester’s ability to quickly (1) 

identify through a visual decomposition (treeview) 

the structure and sub-structures of a class to be 

tested by Korat (2) specify using the very same 

treeview the number of contained objects in the test 

structure to create (3) specify a numeric range of 

values that each field containing primitive data types 

can assume (4) specify whether contained object(s) 

can be null and (5) generate a resultant text-based 

list of Korat-created candidates passing the repOK 

method.  Our primary motivation for constructing 

this extension was to permit the tester to quickly 

change those inputs that govern the size of the state 

space our Korat finitization method constructs. 

Moreover, by providing an interactive visual 

depiction of the structure under test, we hoped a 

novice tester might more easily decipher its 

composition. We textually output valid candidates to 

aid further the tester’s comprehension by means of 

visual feedback. 
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III.  A SELECTIVE LOOK AT KORAT 

As our investigation depended upon our thorough 

understanding and successful implementation of the 

Korat algorithm, and given that its source code is not 

publicly available, we spent considerable time 

authoring our interpretation of the algorithm. We 

used the pseudo-code presented in [2] as a starting 

point for this endeavor. Readers should note that we 

do not provide a comprehensive analysis of Korat, 

instead referring readers to the Korat author’s texts 

in [1] and [2] to elucidate completely the algorithm’s 

details. 

We began our investigation by stepping through 

our conceptual interpretation of the algorithm using 

pencil and paper. After hand-generating more than 

one hundred candidates in the iterative/backtracking-

based fashion described in the paper, we next turned 

our attentions to understanding the mechanics of 

creating/initializing and then moving through the 

state space. 

Fundamental to Korat is the concept of an “Object 

Field.” There is an ObjectField for each member 

variable in the test structure and the sub-structures it 

contains. The state space from which valid 

candidates emerge is a mapping of each and every 

ObjectField to an array of ClassDomainIndex(es). Korat-

generated candidates passed to the repOK method 

are partially ordered streams of ObjectFields, wherein 

each position represents a particular ObjectField, 

and the value thereat is an indirect pointer (that is, 

an index to an index to a value) to a single object 

from one or more ClassDomains. 

 To understand how to generate class domains we 

began by deconstructing the data structure 

ClassDomainIndex. A ClassDomainIndex is, in essence, a 

mechanism through which to reach a particular 

instance of a class in a particular class domain. We 

discovered that it is a quasi-repetitive structure 

wherein each member of a class domain carries an 

identical copy of the domain objects specific to a 

particular domain. Differentiation occurs between 

class domain indexes with identical class domains 

because every class domain index has a successive 

numerical index into the class domain.  This 

arrangement imposes a lexicographical ordering 

within each of the domains. In the case of the binary 

search tree we used in development (a 3-node binary 

search tree), the class domain(s) for the Root 

ObjectField consisted of {null}, {Node0, Node1, 

Node2}. Null always forms a domain by itself. As an 

example of this configuration, we present a graphical 

representation of the class domain indexes for the 

field tree::root  in Figure 1. 

 

 

 

 
Figure 

1: 

Class 

Domain Index for Tree: Root ObjectField 

 

 After understanding how to map object fields to 

class domains, we next turned our attention to 

implementing Korat in code.  

IV.  IMPLEMENTING KORAT AND THE VISUAL 

FINITIZATION EDITOR 

We chose to author our implementation of Korat 

and the visual finitization construction editor in Sun 

Microsystems Java J2SE 5.0 (a.k.a.  1.5.) We chose 

this version because of its inherent support for 

generic data types. The visual portion of our project 

we authored also in 5.0, using both the JFaces and 

SWT toolkits from the Eclipse Project.  We selected 

these libraries because their performance is vastly 

superior to that of Java JFC/Swing in our target 

environment, Windows.  Interestingly, we 

encountered a fare amount of difficulty in our 

attempts to make our treeview nodes editable. Direct 

support for editing nodes in the JFace API proved so 

troublesome that it became a non-trivial task to force 

this functionality by merging SWT routines with the 

JFaces library.  

Our first coding responsibility entailed the creation 

of a mechanism that takes as input a user-specified 

class name. It then investigates it to discern its 

underlying structure. In our code, we employ 

extensively the Java Reflection API to walk the 

structure of the class under test, creating as we go a 

list of the sub-structures contained therein. As our 
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program encounters each new sub-structure, the 

algorithm spans into that new type and begins 

decomposing it. Upon completion of this nested 

crawl, control returns to the parent structure. If a 

previously encountered type reappears, our program 

knows not to re-visit it since there already exists an 

entry for it in our type catalogue. 

The results of this reflective exploration of the test 

structure populate the left pane of our GUI. The 

discovered structure is rendered as a collapsible 

treeview [see Appendix A]. The outermost level 

displays all of the data types discovered during the 

crawl. In the case of our binary search tree this 

includes: the binary search tree class, tree size 

definition (string), node class, node info definition, 

node description definition (string), and the node 

comparable definition. For each encountered data 

type, the tester sees the class name. In the case of 

types that describe fields, the tester sees a short 

name that is composed of the object’s name and the 

name of the field.  Data types that are numeric in 

nature present min/max value boxes, into which the 

tester may specify the minimum and maximum 

values of objects to be create created.  A cardinality 

property exists for non-numeric data types. The 

tester can set the cardinality to control the number of 

objects to be created. 

Descending inward from the first node in the 

treeview (in this particular case, the binary search 

tree class), the user views each field discovered in 

the test class. Under each field box there appears the 

field’s name and type. Furthermore, there is a box 

indicating whether or not the field contains a 

primitive data type, of which there are eight in the 

Java language. Finally, the tester has the option to 

choose whether the field permits null as a valid 

value. Toggling on the null entry enables the tester 

to expand his state space to include checking  for 

nulls. If such checking is not deemed necessary, then 

he can generate a smaller scope by disabling the 

inclusion of a null class domain for the selected 

field’s class domain index array. These user 

specifications will be consumed in the next phase by 

the ObjectFieldFactory to constrain the creation of 

each ObjectField and the objects in the class domains 

they point to.   

Clicking on the Build button initiates a three-step 

process. In Phase 1, we look at every object type 

appearing in the far left level of the treeview and 

determine the class domains to be built. The tester-

defined cardinality values constrain the number of 

objects to create for the appropriate class domain. 

So, in the case of Node::Comparable, if the tester 

sets cardinality to 3, then our implementation knows 

to create three objects of the Comparable interface 

type. Note that we will only instantiate interfaces for 

which our crawler was able to find a concrete 

implementation. If no such concrete implementation 

is discovered, we simply set the class domain to null. 

In the case of primitives, such as int, we create 

objects using the appropriate object wrappers. 

Actual values for these wrapper types come from the 

range specified by the user in the GUI. To avoid 

class domain collisions (that is, when there are two 

or more unrelated fields that contain the same 

datatype), we append the fieldname to the class 

domain. Therefore, in the event that we were to have 

a structure with two unrelated int fields, we’d know 

that the values for each field came from different, 

discrete ClassDomains.  We treat strings in a similar 

fashion – mapping each string field to a unique 

ClassDomain of strings. 

In Phase 2 of the build process, we create an 

ObjectField for each and every field described by an 

ObjectFieldFactory. In the case of the tree object, we 

know to create two ObjectFieldFactor(ies) one for 

root and one for size. In the case of Nodes, we know 

to create Node0Left, Node0Right, Node1Left, 

Node1Right, Node2Left, Node2Right, etc. We name 

our fields by concatenating the class name, a 

sequential number and the field name. Hence, as 

seen above, we derive Node0Right.  

  In Phase 3, we use the metadata defined in the 

ObjectFieldFactory to determine whether a null class 

domain should be added to the existing Class Domains 

for each object field. Combining the information 

gleaned in Phase 1, we then create our 

ClassDomainIndexes mapping each and every 

ObjectField to a set of class domain indexes. We add 

the class domain indexes one at a time, starting with 

the null class domain index (if appropriate) and then 

adding the object class domains, using as our index 

the order of object creation. In the case of the 

Node0Left object field, we map it to one 

NullClassDomainIndex with an index of 0 and then 

three NodeClassDomainIndex(es) with indexes of 0 
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through 2. The result of this process is a finitization 

space. This is two-dimensional mapping of object 

fields to class domain indexes. We draw it in 

hierarchical fashion in the right hand pane of the 

GUI. In essence, this pane is a structured realization 

of the finitization creation effort. The outermost 

level of the tree depicts each and every object field 

we created. Underneath each object field the user 

sees every class domain index to which it is mapped. 

The class domain index is depicted in the following 

fashion: the pointed-to object is represented using its 

Java .toString() method and its numerical index into 

the class domain is shown as an integer. This 

visualization shows clearly the space to be fed to the 

koratSearch method. We believe this illustration to 

be a novel and useful aid to enhance the tester’s 

comprehension of the finitization space constructed. 

After generating the finitization space, we feed it 

to the koratSearch method.  To successfully run the 

algorithm we adapted the pseudo-code in [2].  As it 

was imperative to track fields accessed during firing 

of the repOK method, we modified our repOK 

method to use accessor methods in our binary search 

tree implementation. Our accessor methods popped a 

copy of the object field on to the stack in the event it 

is not already there. Although using accessor 

methods was not our preferred implementation 

choice, we discovered that the only way to 

instrument Field accesses without using accessors 

and mutators was to modify the byte code or to use 

some form of proxy framework. Both of these 

options were rejected due to time constraints. 

In order to ensure that the entire data structure 

under test is considered when checking for 

isomorphs, all reachable object fields must be added 

to the stack regardless of whether they were used to 

determine if the class invariants were satisfied. If the 

candidate is determined to be valid (or if pruning of 

the state space is disabled), the data structure is 

traversed to each basis field; any fields that are not 

already in the stack are added.  

 The bottom pane in the GUI presents the tester 

with a list of all valid candidate structures meeting 

the conditions of the class invariant. In the case of 

the binary search tree we implemented, the results 

pane displays all valid trees using the toString() 

representation of each object for each of the object 

fields. With isomorphism breaking turned on (it is 

turned on by default) and tree size value of exactly 

three, our results pane correctly display five non-

isomorphic structures. In the case where we request 

all valid structures ranging from size 0 to size 3, the 

results pane displays 15 valid candidates.  

V. AN ANALYSIS FROM THE FINANCIAL SERVICES 

DOMAIN 

One of our central objectives in implementing 

Korat is to apply it to a ‘real-world’ data structure. 

We have therefore defined a simplified version of a 

loan application, similar to that in use at a large 

financial institution. This class consists of an id, a 

set of applicants, a state (either complete or 

incomplete), a status (either pre-submitted, 

submitted, decisioned, or fulfilled), and an approved 

amount ($0.00 for declined/undecisioned 

applications, otherwise the amount of the loan). 

For the purposes of this exercise, external checks 

on the status of activities such as underwriting, 

sending a decline letter, or extending a loan offer we 

represent with the Boolean flags isApproved and 

isFulfilled. The services which compare the internal 

state and status of the loan application with other 

business systems are more elaborate, but these flags 

serve to illustrate how the class invariants for a loan 

application reflect the business rules that define what 

the correct values of an application may be at 

different points in its lifecycle. 

The repOk() method for the LoanApplication class 

is seen below in Figure 2: 

 
//enforce the class invariants of LoanApplication 

 private boolean repOk(){ 

  if (state == LoanApplicationState.PreSubmitted){ 

   return true; 

  } 

  else if (status == LoanApplicationStatus.Incomplete){ 

   //only complete applications may be submitted 

   return false; 

  } 

   

  //for decisioned loans - approval requires a loan amount 

  //decline requires a $0.00 amount 

  if (state == LoanApplicationState.Decisioned){ 

   if (isApproved){ 

    if(approvedAmount.getAmount() <= 0.00){ 

     return false; 

    } 

   } 

   else{ 

    if (approvedAmount.getAmount() ==  0.00){ 

     return false; 

    } 
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   } 

  } 

   

  if (state == LoanApplicationState.Fulfilled){ 

   if (!isFulfilled){ 

    return false; 

   } 

  } 

   

  return true; 

 } 

Figure 2: repOK for LoanApplication 

 

The repOk() method shows that before an 

application is in a submitted state there are no 

constraints on the valid values of the fields. At this 

stage of processing, applications may have missing 

or incomplete data elements. Moreover, other fields 

may have initial values that are potentially illegal 

later on. Note that for any subsequent status, it is 

illegal for an application to be incomplete; if a 

decision has been made, the approved amount must 

agree with the decision. Declined loans must have an 

approved amount of $0.00, and approved loans must 

have some positive loan value. Finally, if an 

application is marked as fulfilled, the isFulfilled 

indicator must agree that fulfillment activities are 

complete. 

 

VI. CONCLUSION 

 

We have shown that Korat can be a powerful tool in 

the validation of data structures. The quality of the 

predicates and the finitization are critical factors in 

the success of the Korat-driven testing effort, 

however; and our interactive GUI finitization 

technique added to the Korat toolkit provides a 

significant enhancement to the finitization creation 

process. 

  

This business domain example serves to illustrate a 

point from [1] that if a well designed object already 

contains a mechanism for enforcing the class 

invariants, like a repOk() method, then the 

generation of valid candidates with the Korat 

algorithm requires little additional effort on the part 

of the programmer. If no such enforcement 

mechanism has been implemented, there is a 

substantial amount of work in preparing the 

predicate method so that valid candidates can be 

identified. 

 

While this may be a trivial exercise for a well 

defined abstract data type like a tree or a queue, for a 

business domain object, it is likely that the class 

invariants are poorly defined – if they are defined at 

all. This is not to say that this makes Korat an undue 

burden on the programmer; much rather, Korat 

becomes useful when the business requirements are 

understood well enough to define what the class 

invariants are (as well as the preconditions and 

postconditions for the methods on the class). The 

effort required to generate tests with Korat is 

essential in determining what to test in the first 

place. 

 

It is often the case in building a large system that all 

of the details of the specification are not known up 

front. This is where the power of our GUI 

Finitization Editor becomes clear. A programmer 

can begin with a somewhat useful finitization 

generated from a weak class invariant and begin to 

refine it over time to become more useful and more 

well defined. Ultimately, the construction of better 

predicates can be driven by the types of objects the 

programmer selects in the interactive finitization 

process; then the well-defined predicates can be 

employed to better enforce the intended behavior of 

the class. This serves to illustrate how GUI-driven 

finitization improves the utility of Korat as an 

iterative development tool. 
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